The flow of excitation energy in LHCII monomers: implications for the structural model of the major plant antenna.
نویسندگان
چکیده
Spectral and kinetic information on energy transfer within the light-harvesting complex II (LHCII) monomer was obtained from this subpicosecond transient absorption study, by using selective excitation (663, 669, 672, 678, and 682 nm) of various Chl a absorption bands and detecting the induced changes over the entire Qy region (650-700 nm). It is shown that transfer from the pigment(s) absorbing around 663 nm to the low energy ones occurs in 5 +/- 1 ps, whereas the 670-nm excitation is delivered to the same "destination" in two phases (0.30 +/- 0.05 ps, and 12 +/- 2 ps), and a fast equilibration (lifetime 0.45 +/- 0.05 ps) takes place within the main absorption band (675-680 nm). From comparison with results from similar time-resolved measurements on trimeric samples, it can be concluded that the intramonomeric energy transfer completely determines the spectral equilibration observed in native LHCII complexes. To correlate the measured lifetimes and their associated spectra with the pigment organization within the available structural model of LHCII (. Nature. 367:614-621), extensive but straightforward theoretical modeling was used. Thus it is demonstrated that the pigment assignment (Chl a or Chl b) given by Kuhlbrandt and co-workers cannot simultaneously describe the dichroic spectra and the transient absorption results for the rather homologous LHCII and CP29 proteins. A more recent assignment for CP29, in which a Chl b molecule ("Chl b5") is identified as a Chl a (Dr. R. Bassi, personal communication), leads to a much better description of both CP29 and LHCII. Furthermore, the orientations of the transition dipole moments, which have not been obtained in the crystal structure, are now assigned for most of the Chl's.
منابع مشابه
Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light.
Several proteins of photosystem II (PSII) and its light-harvesting antenna (LHCII) are reversibly phosphorylated according to light quantity and quality. Nevertheless, the interdependence of protein phosphorylation, nonphotochemical quenching, and efficiency of electron transfer in the thylakoid membrane has remained elusive. These questions were addressed by investigating in parallel the wild ...
متن کاملFrom light-harvesting to photoprotection: structural basis of the dynamic switch of the major antenna complex of plants (LHCII)
Light-Harvesting Complex II (LHCII) is largely responsible for light absorption and excitation energy transfer in plants in light-limiting conditions, while in high-light it participates in photoprotection. It is generally believed that LHCII can change its function by switching between different conformations. However, the underlying molecular picture has not been elucidated yet. The available...
متن کاملA refined model of state transitions in plant thylakoid membranes.
Many photosynthetic organisms use state transitions to rapidly balance light absorption by photosystems I and II (PSI and PSII) under varying light conditions (see Lemeille and Rochaix, 2010). During state transitions in plants, a major antenna complex in thylakoid membranes, light-harvesting complex II (LHCII), migrates between the two photosystems. Under State II conditions, when PSII is pref...
متن کاملEffect of Light Acclimation on the Organization of Photosystem II Super- and Sub-Complexes in Arabidopsis thaliana
To survive under highly variable environmental conditions, higher plants have acquired a large variety of acclimation responses. Different strategies are used to cope with changes in light intensity with the common goal of modulating the functional antenna size of Photosystem II (PSII). Here we use a combination of biochemical and biophysical methods to study these changes in response to acclim...
متن کاملOrientation of chlorophyll transition moments in the higher-plant light-harvesting complex CP29.
The Q(y) transition dipole moment vectors of all eight chlorophylls in the higher-plant antenna protein CP29 were calculated by an original method on the basis of linear dichroism and absorption spectroscopy. The contribution of individual chromophores was determined from difference spectra between wild type and mutant proteins in which a single chlorophyll has been removed by mutating pigment-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 75 6 شماره
صفحات -
تاریخ انتشار 1998